Top Quark Mass Measurement by *Dynamical Likelihood Method* in the lepton+jets channel at CDF

Kohei Yorita

Waseda University, Japan For the CDF collaboration May 2004

APS/DPF @ Denver CO

Introduction

1) Decay Chain : $q\bar{q}(85\%)$, gg(15%) at sqrt(s) = 1.96 TeV

Kinematical cuts for "lepton+jets"

- 1) One lepton : central electron / muon Et(Pt) > 20 GeV, |eta| < ~1.0
- 2) Met > 20 GeV
- 3) 4 tight jets : Et > 15 GeV, |eta| < 2.0
- 4) At least 1 btag jets
- 2) Precise measurement of M_{top}
 helps constrain of the mass of 80.5
 the Higgs. Goal: ~ 2 GeV!

 3) Runl CDF & D0 combined Mass 80.3

Published: 174.3 \pm 5.1 GeV

New(preliminary): $178.0 \pm 4.3 \, \text{GeV}$

What's DLM?

- The Method : CDF Original Method !
 - Originally proposed in 1988 by K.Kondo.(J.Phys. Soc. 57, 4126)
 - The latest formulation was submitted to JPS recently. "A New Formulation of Dynamical Likelihood Method"
- Formulation:

For i-th event

M; Prod, decay, propagator

$$L^{i}(M_{top}) = \int \sum_{combnsol} \frac{2\pi^{4}}{Flux} |M|^{2} F(z_{1}, z_{2}) f(p_{t}) w(\mathbf{x}, \mathbf{y}_{t}; \boldsymbol{\alpha}) d\mathbf{x}$$

M: Matrix element of tt process, F: Parton distribution function (Z_1, Z_2)

 $f(p_t)$: Probability for the Pt of tt system.

w: Transfer function, x; partons \leftrightarrow y; observables

For all events

To obtain
$$M_{top}$$
, $\prod_{event} L^i(M_{top}) \longrightarrow \underline{\text{Maximum likelihood Method}}$

How Likelihood looks like?

25 events example for sig and bkg using generator level input

Signal example: - log(likelihood) Bkg example: - log(likelihood)

Blue: all added up

Red: right comb.

Black: wrong comb.

Peak around 175 GeV

Range[155-195]GeV

Blue: all added up

Black: each comb.

Likelihood tends to be higher in lower mass region.

Backgrounds

- Expected background: 4.2 events (22 obsv.)
- Background pulls likelihood peak down.
- Pseudo experiments(22ev) by varying background fraction to look at effects on signal tt events.

Mass shift

Each source effect

Background Summary

		
source	W+4j	
Mistag	1.2 ± 0.37	
Wbb	0.7 ± 0.29	
Wcc	0.3 ± 0.12	
Wc	0.2 ± 0.12	
Single top	0.17 ± 0.03	
WW	0.08 ± 0.05	
nonW	1.6 ± 0.38	
Bkg tot.	4.2 ± 0.71	
N obs.	22	
tt (6.7pb)	20.9	

Need to evaluate how much shifted

Mapping scheme!

Mapping Function

- The mapping function is obtained by 22 events PEs varying the background fraction with Poisson.
- Fit parameters are very stable.

After applying mapping functions

(1) Sanity check (2) Width of Pull

Extracted Top Quark Mass using L=162 pb⁻¹ at CDF

Observed events :Total 22(3) events; CEM 12(1), Muons 10(2)

Statistical Uncertainty

• Expected statistical Error :

Black arrows:

Data : +4.5, -5.0 GeV

Monte Carlo:

Mean : +5.4, -5.0 GeV

MPV : + 4.5, - 4.1 GeV

For the future -

Simple Prospect:

- by Luminosity scaling

Expect to be ~2 GeV(1fb⁻¹) by this single analysis. Improvement in progress!

Time	Luminosity	Expected
(Expected)	w/ silicon	stat. Error
Summer 2004	~ 300 pb ⁻¹	~ 3.7 GeV
Summer 2005	~ 600 pb ⁻¹	~ 2.6 GeV
Summer 2006	~ 1 fb ⁻¹	~ 2.0 GeV

Comparisons

 Event-by-event Maximum Likelihood Mass with wide range of [125-225] GeV.

Note: First(last) bin includes under(over) flow.

Maximum Likelihood Mass

Event likelihood

For i-th event,

$$L_{ev}^i = \int L^i(M) dM$$

A event has one likelihood value

Event Likelihood distribution

Systematic Uncertainty

- All values are estimated by Pseudo experiments with background of 4.2 ev by MC
- Jet Energy is dominant
 - Improvements promised for summer, goes half?
- ISR/FSR: Not On/Off
 Monte Carlo with reasonable combination of Λ, Q²
- PDF: different EigenVectors
- Fragmentation ambiguity is in transfer function error.

0	A B4 (O a)//a2)
Sources	Δ M _{top} (GeV/c ²)
Jet Energy Scale	5.3
ISR	0.5
FSR	0.5
PDF	2.0
Generator	0.6
Spin correlation	0.4
NLO effect	0.4
Bkg fraction ($\pm 5\%$)	0.5
Bkg Modeling	0.5
MC Modeling	0.6
Transfer function	2.0
Total	6.2 GeV

Conclusions and Looking Ahead

We measured top mass to be,

$$M_{top} = 177.8 \pm \frac{4.5}{5.0}$$
 (stat.) \pm 6.2 (syst.)GeV/c²

using 22 exact-4-tight jets events (L=162 pb⁻¹).

- Systematic uncertainty is dominated by JES.
- Further sophistications of DLM: In progress(publication)
- Get more data, extend acceptance to measure top mass more precisely, goal is ~ ± 1 GeV in RunII.
- Hadronic W Mass Measurement.
- The top mass can be used to determine top event kinematics by DLM. DLM is VERY powerful at the stage to look at beyond Standard Model!!!